Peer-Reviewed Journal Details
Mandatory Fields
Ade, PAR;Aghanim, N;Alves, MIR;Arnaud, M;Ashdown, M;Atrio-Barandela, F;Aumont, J;Baccigalupi, C;Balbi, A;Banday, AJ;Barreiro, RB;Bartlett, JG;Battaner, E;Bedini, L;Benabed, K;Benoit, A;Bernard, JP;Bersanelli, M;Bonaldi, A;Bond, JR;Borrill, J;Bouchet, FR;Boulanger, F;Burigana, C;Butler, RC;Cabella, P;Cardoso, JF;Chen, X;Chiang, LY;Christensen, PR;Clements, DL;Colombi, S;Colombo, LPL;Coulais, A;Cuttaia, F;Davies, RD;Davis, RJ;de Bernardis, P;de Gasperis, G;de Zotti, G;Delabrouille, J;Dickinson, C;Diego, JM;Dobler, G;Dole, H;Donzelli, S;Dore, O;Douspis, M;Dupac, X;Ensslin, TA;Finelli, F;Forni, O;Frailis, M;Franceschi, E;Galeotta, S;Ganga, K;Genova-Santos, RT;Ghosh, T;Giard, M;Giardino, G;Giraud-Heraud, Y;Gonzalez-Nuevo, J;Gorski, KM;Gregorio, A;Gruppuso, A;Hansen, FK;Harrison, D;Hernandez-Monteagudo, C;Hildebrandt, SR;Hivon, E;Hobson, M;Holmes, WA;Hornstrup, A;Hovest, W;Huffenberger, KM;Jaffe, TR;Jaffe, AH;Juvela, M;Keihanen, E;Keskitalo, R;Kisner, TS;Knoche, J;Kunz, M;Kurki-Suonio, H;Lagache, G;Lahteenmaki, A;Lamarre, JM;Lasenby, A;Lawrence, CR;Leach, S;Leonardi, R;Lilje, PB;Linden-Vornle, M;Lubin, PM;Macias-Perez, JF;Maffei, B;Maino, D;Mandolesi, N;Maris, M;Marshall, DJ;Martin, PG;Martinez-Gonzalez, E;Masi, S;Massardi, M;Matarrese, S;Mazzotta, P;Melchiorri, A;Mennella, A;Mitra, S;Miville-Deschenes, MA;Moneti, A;Montier, L;Morgante, G;Mortlock, D;Munshi, D;Murphy, JA;Naselsky, P;Nati, F;Natoli, P;Norgaard-Nielsen, HU;Noviello, F;Novikov, D;Novikov, I;Osborne, S;Oxborrow, CA;Pajot, F;Paladini, R;Paoletti, D;Peel, M;Perotto, L;Perrotta, F;Piacentini, F;Piat, M;Pierpaoli, E;Pietrobon, D;Plaszczynski, S;Pointecouteau, E;Polenta, G;Popa, L;Poutanen, T;Pratt, GW;Prunet, S;Puget, JL;Rachen, JP;Reach, WT;Rebolo, R;Reinecke, M;Renault, C;Ricciardi, S;Ristorcelli, I;Rocha, G;Rosset, C;Rubino-Martin, JA;Rusholme, B;Salerno, E;Sandri, M;Savini, G;Scott, D;Spencer, L;Stolyarov, V;Sudiwala, R;Suur-Uski, AS;Sygnet, JF;Tauber, JA;Terenzi, L;Tibbs, CT;Toffolatti, L;Tomasi, M;Tristram, M;Valenziano, L;Van Tent, B;Varis, J;Vielva, P;Villa, F;Vittorio, N;Wade, LA;Wandelt, BD;Ysard, N;Yvon, D;Zacchei, A;Zonca, A
2013
September
Astronomy and Astrophysics
Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt system
Published
7 ()
Optional Fields
MICROWAVE-ANISOTROPY-PROBE SPINNING DUST EMISSION CENTIMETER-WAVE CONTINUUM H-ALPHA INFRARED-EMISSION WMAP OBSERVATIONS ANOMALOUS DUST FOREGROUND EMISSION TENTATIVE DETECTION POLARIZATION DATA
557
We perform an analysis of the diffuse low-frequency Galactic components in the southern part of the Gould Belt system (130 degrees <= l <= 230 degrees and -50 degrees <= b <= -10 degrees). Strong ultra-violet flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies (nu < 40 GHz), while synchrotron emission is very smooth and faint. We separated diffuse free-free emission and AME from synchrotron emission and thermal dust emission by using Planck data, complemented by ancillary data, using the correlated component analysis (CCA) component-separation method and we compared our results with the results of cross-correlation of foreground templates with the frequency maps. We estimated the electron temperature T-e from Ha and free-free emission using two methods (temperature-temperature plot and cross-correlation) and obtained T-e ranging from 3100 to 5200 K for an effective fraction of absorbing dust along the line of sight of 30% (f(d) = 0.3). We estimated the frequency spectrum of the diffuse AME and recovered a peak frequency (in flux density units) of 25.5 +/- 1.5 GHz. We verified the reliability of this result with realistic simulations that include biases in the spectral model for the AME and in the free-free template. By combining physical models for vibrational and rotational dust emission and adding the constraints from the thermal dust spectrum from Planck and IRAS, we are able to present a good description of the AME frequency spectrum for plausible values of the local density and radiation field.
LES ULIS CEDEX A
1432-0746
10.1051/0004-6361/201321160
Grant Details