Peer-Reviewed Journal Details
Mandatory Fields
Ade, PAR;Aghanim, N;Arnaud, M;Ashdown, M;Atrio-Barandela, F;Aumont, J;Baccigalupi, C;Balbi, A;Banday, AJ;Barreiro, RB;Barrena, R;Bartlett, JG;Battaner, E;Benabed, K;Bernard, JP;Bersanelli, M;Bikmaev, I;Bock, JJ;Bohringer, H;Bonaldi, A;Bond, JR;Borrill, J;Bouchet, FR;Bourdin, H;Burenin, R;Burigana, C;Butler, RC;Cabella, P;Chamballu, A;Chary, RR;Chiang, LY;Chon, G;Christensen, PR;Clements, DL;Colafrancesco, S;Colombi, S;Colombo, LPL;Comis, B;Coulais, A;Crill, BP;Cuttaia, F;Da Silva, A;Dahle, H;Davis, RJ;de Bernardis, P;de Gasperis, G;de Rosa, A;de Zotti, G;Delabrouille, J;Democles, J;Diego, JM;Dole, H;Donzelli, S;Dore, O;Douspis, M;Dupac, X;Efstathiou, G;Ensslin, TA;Finelli, F;Flores-Cacho, I;Forni, O;Frailis, M;Franceschi, E;Frommert, M;Galeotta, S;Ganga, K;Genova-Santos, RT;Giard, M;Giraud-Heraud, Y;Gonzalez-Nuevo, J;Gorski, KM;Gregorio, A;Gruppuso, A;Hansen, FK;Harrison, D;Hernandez-Monteagudo, C;Herranz, D;Hildebrandt, SR;Hivon, E;Hobson, M;Holmes, WA;Hornstrup, A;Hovest, W;Huffenberger, KM;Hurier, G;Jaffe, TR;Jaffe, AH;Jones, WC;Juvela, M;Keihanen, E;Keskitalo, R;Khamitov, I;Kisner, TS;Kneissl, R;Knoche, J;Kunz, M;Kurki-Suonio, H;Laheenmaki, A;Lamarre, JM;Lasenby, A;Lawrence, CR;Le Jeune, M;Leonardi, R;Lilje, PB;Linden-Vornle, M;Lopez-Caniego, M;Lubin, PM;Luzzi, G;Macias-Perez, JF;MacTavish, CJ;Maffei, B;Maino, D;Mandolesi, N;Maris, M;Marleau, F;Marshall, DJ;Martinez-Gonzalez, E;Masi, S;Massardi, M;Matarrese, S;Mazzotta, P;Mei, S;Melchiorri, A;Melin, JB;Mendes, L;Mennella, A;Mitra, S;Miville-Deschenes, MA;Moneti, A;Montier, L;Morgante, G;Mortlock, D;Munshi, D;Murphy, JA;Naselsky, P;Nati, F;Natoli, P;Norgaard-Nielsen, HU;Noviello, F;Novikov, D;Novikov, I;Osborne, S;Oxborrow, CA;Pajot, F;Paoletti, D;Perotto, L;Perrotta, F;Piacentini, F;Piat, M;Pierpaoli, E;Piffaretti, R;Plaszczynski, S;Pointecouteau, E;Polenta, G;Popa, L;Poutanen, T;Pratt, GW;Prunet, S;Puget, JL;Rachen, JP;Rebolo, R;Reinecke, M;Remazeilles, M;Renault, C;Ricciardi, S;Ristorcelli, I;Rocha, G;Roman, M;Rosset, C;Rossetti, M;Rubino-Martin, JA;Rusholme, B;Sandri, M;Savini, G;Scott, D;Spencer, L;Starck, JL;Stolyarov, V;Sudiwala, R;Sunyaev, R;Sutton, D;Suur-Uski, AS;Sygnet, JF;Tauber, JA;Terenzi, L;Toffolatti, L;Tomasi, M;Tristram, M;Valenziano, L;Van Tent, B;Vielva, P;Villa, F;Vittorio, N;Wade, LA;Wandelt, BD;Wang, W;Welikala, N;Weller, J;White, SDM;White, M;Yvon, D;Zacchei, A;Zonca, A
2013
September
Astronomy and Astrophysics
Planck intermediate results XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies
Published
5 ()
Optional Fields
ACTIVE GALACTIC NUCLEI SOUTH-POLE TELESCOPE DIGITAL SKY SURVEY PRE-LAUNCH STATUS BLACK-HOLES INTRACLUSTER MEDIUM SCALING RELATIONS COOLING FLOWS AGN FEEDBACK CLUSTERS
557
We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to M-* similar to 2 x 10(11) M-circle dot, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to M-500 similar to 2 x 10(13) M-circle dot, and there is a clear indication of signal down to M-500 similar to 4 x 10(12) M-circle dot. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20 % lower than found from observations of X-ray clusters, a difference consistent with the magnitude of Malmquist bias effects that were previously estimated for the X-ray sample.
LES ULIS CEDEX A
0004-6361
10.1051/0004-6361/201220941
Grant Details