Peer-Reviewed Journal Details
Mandatory Fields
Harris, P;Brunsdon, C;Charlton, M
2011
January
International Journal of Geographical Information Science
Geographically weighted principal components analysis
Published
11 ()
Optional Fields
REGRESSION SPACE
25
1717
1736
Principal components analysis (PCA) is a widely used technique in the social and physical sciences. However in spatial applications, standard PCA is frequently applied without any adaptation that accounts for important spatial effects. Such a naive application can be problematic as such effects often provide a more complete understanding of a given process. In this respect, standard PCA can be (a) replaced with a geographically weighted PCA (GWPCA), when we want to account for a certain spatial heterogeneity; (b) adapted to account for spatial autocorrelation in the spatial process; or (c) adapted with a specification that represents a mixture of both (a) and (b). In this article, we focus on implementation issues concerning the calibration, testing, interpretation and visualisation of the location-specific principal components from GWPCA. Here we initially consider the basics of (global) principal components, then consider the development of a locally weighted PCA (for the exploration of local subsets in attribute-space) and finally GWPCA. As an illustration of the use of GWPCA (with respect to the implementation issues we investigate), we apply this technique to a study of social structure in Greater Dublin, Ireland.
ABINGDON
1365-8816
10.1080/13658816.2011.554838
Grant Details