Peer-Reviewed Journal Details
Mandatory Fields
Ade, PAR;Aghanim, N;Alina, D;Alves, MIR;Armitage-Caplan, C;Amaue, M;Arzoumanian, D;Ashdown, M;Atrio-Barandela, F;Aumont, J;Baccigalupi, C;Banda, AJ;Barreiro, RB;Battaner, E;Benabed, K;Benoit-Levy, A;Bernard, JP;Bersanelli, M;Bielewicz, P;Bock, JJ;Bond, JR;Borrill, J;Bouchet, FR;Boulanger, F;Bracco, A;Burigana, C;Butler, RC;Cardoso, JF;Catalano, A;Chamballu, A;Chary, RR;Chiang, HC;Christensen, PR;Colombi, S;Colombo, LPL;Combet, C;Couchot, E;Coulais, A;Crill, BP;Curto, A;Cuttaia, E;Danese, L;Davies, RD;Davis, RJ;de Bernardis, P;Dal Pino, EMD;De Rosa, A;de Zotti, G;Delabrouille, J;Desert, FX;Dickinson, C;Diego, JM;Donzelli, S;Dore, O;Douspis, M;Dunkley, J;Dupac, X;Efstathiou, G;Ensslin, TA;Eriksen, HK;Falgarone, E;Ferflere, K;Finelli, F;Forni, O;Frailis, M;Fraisse, AA;Franceschi, E;Galeotta, S;Ganga, K;Ghosh, T;Giard, M;Giraud-Heraud, Y;Gonzalez-Nuevo, J;Gorski, KM;Gregorio, A;Gruppuse, A;Guillet, V;Hansen, FK;Harrison, DL;Helou, G;Hernandez-Monteagudo, C;Hildebrandt, SR;Hivon, E;Hobson, M;Holmes, WA;Hornstrup, A;Huffenberger, KM;Jaffe, AH;Jaffe, TR;Jones, WC;Juvela, M;Keihanen, E;Keskitalo, R;Kisner, TS;Kneissl, R;Knoche, J;Kunz, M;Kurki-Suonio, H;Lagache, G;Lahteenmaki, A;Lamarre, JM;Lasenby, A;Lawrence, CR;Leaiy, JP;Leonardi, R;Levrier, F;Liguori, M;Lilje, PB;Linden-Vornle, M;Lopez-Caniego, M;Lubin, PM;Macias-Perez, IF;Maffei, B;Magalhaes, AM;Maino, D;Mandolesi, N;Maris, M;Marshall, DJ;Martin, PG;Martinez-Gonzalez, E;Masi, S;Matarrese, S;Mazzotta, P;Melchiorri, A;Mendes, L;Mennella, N;Migliaccio, M;Mivile-Deschenes, MA;Moneti, A;Montier, L;Morgante, G;Mortlock, D;Munshi, D;Murphy, A;Naselsky, P;Nati, E;Natoli, P;Netterfield, CB;Noviello, F;Novikov, D;Novikov, I;Oxborrow, CA;Pagano, L;Pajot, E;Paadini, R;Paoletti, D;Pasian, E;Pearson, TJ;Perdereau, O;Perotto, L;Perrotta, F;Piacentini, F;Piat, M;Pietrobon, D;Plaszczynski, S;Poidevin, F;Pointecouteau, E;Polenta, G;Popa, L;Pratt, GW;Prunet, S;Puget, JL;Rachen, JP;Reach, WT;Rebolo, R;Reinecke, M;Remazeilles, M;Renault, C;Ricciardi, S;Riller, T;Ristorcelli, I;Rocha, G;Rosset, C;Roudier, G;Rubino-Martin, A;Rusholme, B;Sandri, M;Savini, G;Scott, D;Spencer, LD;Stolyarov, V;Stompor, R;Sudiwala, R;Sutton, D;Suur-Uski, AS;Sygnet, JF;Tauber, JA;Terenzi, L;Toffolatti, L;Tomasi, M;Tristram, M;Tucci, M;Umana, G;Valenziano, L;Valiviita, J;Van Tent, B;Vielva, P;Villa, F;Wade, LA;Wandelt, BD;Zacchei, A;Zonca, A
2015
April
Astronomy and Astrophysics
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
Published
109 ()
Optional Fields
PROBE WMAP OBSERVATIONS RADIATIVE TORQUE ALIGNMENT FORMING MOLECULAR CLOUDS MAGNETIC-FIELD GEOMETRY GRAIN ALIGNMENT INTERSTELLAR TURBULENCE ROTATION MEASURES SOUTHERN SKY EXTRAGALACTIC SOURCES 1.4 GHZ
576
This paper presents an overview of the polarized sky as seen by Planck HFI at 353GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1 degrees resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (p(max) = 19.8%), in particular in some regions of moderate hydrogen column density (N-H < 2 x 10(21) cm(-2)). The polarization fraction displays a large scatter at NH below a few 10(21) cm(-2). There is a general decrease in the dust polarization fraction with increasing column density above N-H similar or equal to 1 x 10(21) cm(-2) and in particular a sharp drop above N-H similar or equal to 1.5 x 10(22) cm(-2). We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1 degrees, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
LES ULIS CEDEX A
1432-0746
10.1051/0004-6361/201424082
Grant Details