Peer-Reviewed Journal Details
Mandatory Fields
Ade, PAR;Aghanim, N;Armitage-Caplan, C;Arnaud, M;Ashdown, M;Atrio-Barandela, E;Aumont, J;Baccigalupi, C;Banday, AJ;Barreiro, RB;Bartlett, JG;Basak, S;Battaner, E;Benabed, K;Benoit, A;Benoit-Levy, A;Bernard, JP;Bersanelli, M;Bielewicz, P;Bobin, J;Bock, JJ;Bonaldi, A;Bonavera, L;Bond, JR;Borrill, J;Bouchet, FR;Bridges, M;Bucher, M;Burigana, C;Butler, RC;Cardoso, JF;Catalano, A;Challinor, A;Chamballu, A;Chiang, HC;Chiang, LY;Christensen, PR;Church, S;Clements, DL;Colombi, S;Colombo, LPL;Couchot, F;Coulais, A;Crill, BP;Curto, A;Cuttaia, F;Danese, L;Davies, RD;Davis, RJ;de Bernardis, P;de Rosa, A;de Zotti, G;Dechelette, T;Delabrouille, J;Delouis, JM;Desert, FX;Dickinson, C;Diego, JM;Dole, H;Donzelli, S;Dore, O;Douspis, M;Dunkley, J;Dupac, X;Efstathiou, G;Ensslin, TA;Eriksen, HK;Finelli, F;Forni, O;Frailis, M;Franceschi, E;Galeotta, S;Ganga, K;Giard, M;Giardino, G;Giraud-Heraud, Y;Gonzalez-Nuevo, J;Gorski, KM;Gratton, S;Gregorio, A;Gruppuso, A;Gudmundsson, JE;Hansen, EK;Hanson, D;Harrison, D;Henrot-Versille, S;Hernandez-Monteagudo, C;Herranz, D;Hildebrandt, SR;Hivon, E;Ho, S;Hobson, M;Holmes, WA;Hornstrup, A;Hovest, W;Huffenberger, KM;Jaffe, AH;Jaffe, TR;Jones, WC;Juvela, M;Keihanen, E;Keskitalo, R;Kisner, TS;Kneissl, R;Knoche, J;Knox, L;Kunz, M;Kurki-Suonio, H;Lagache, G;Lahteenmaki, A;Lamarre, JM;Lasenby, A;Laureijs, RJ;Lavabre, A;Lawrence, CR;Leahy, JP;Leonardi, R;Leon-Tavares, J;Lesgourgues, J;Lewis, A;Liguori, M;Lilje, PB;Linden-Vornle, M;Lopez-Caniego, M;Lubin, PM;Macias-Perez, JF;Maffei, B;Maino, D;Mandolesi, N;Mangilli, A;Maris, M;Marshall, DJ;Martin, PG;Martinez-Gonzalez, E;Masi, S;Massardi, M;Matarrese, S;Matthai, E;Mazzotta, P;Melchiorri, A;Mendes, L;Mennella, A;Migliaccio, M;Mitra, S;Miville-Deschenes, MA;Moneti, A;Montier, L;Morgante, G;Mortlock, D;Moss, A;Munshi, D;Murphy, JA;Naselsky, P;Nati, F;Natoli, P;Netterfield, CB;Norgaard-Nielsen, HU;Noviello, F;Novikov, D;Novikov, I;Osborne, S;Oxborrow, CA;Paci, F;Pagano, L;Pajot, F;Paoletti, D;Partridge, B;Pasian, F;Patanchon, G;Perdereau, O;Perotto, L;Perrotta, F;Piacentini, F;Piat, M;Pierpaoli, E;Pietrobon, D;Plaszczynski, S;Pointecouteau, E;Polenta, G;Ponthieu, N;Popa, L;Poutanen, T;Pratt, GW;Prezeaul, G;Prunet, S;Puget, JL;Pullen, AR;Rachen, JP;Rebolo, R;Reinecke, M;Remazeilles, M;Renault, C;Ricciardi, S;Riller, T;Ristorcelli, I;Rocha, G;Rosset, C;Roudier, G;Rowan-Robinson, M;Rubino-Martin, JA;Rusholme, B;Sandri, M;Santos, D;Savini, G;Scott, D;Seiffert, MD;Shellard, EPS;Smith, K;Spencer, LD;Starck, JL;Stolyarov, V;Stompor, R;Sudiwala, R;Sunyaev, R;Sureau, E;Sutton, D;Suur-Uski, AS;Sygnet, JF;Tauber, JA;Tavagnacco, D;Terenzi, L;Toffolatti, L;Tomasi, M;Tristram, M;Tucci, M;Tuovinen, J;Umana, G;Valenziano, L;Valiviita, J;Van Tent, B;Vielva, P;Villa, F;Vittorio, N;Wade, LA;Wandelt, BD;White, M;White, SDM;Yvon, D;Zacchei, A;Zonca, A
2014
November
Astronomy and Astrophysics
Planck 2013 results. XVII. Gravitational lensing by large-scale structure
Published
171 ()
Optional Fields
MICROWAVE BACKGROUND ANISOTROPIES SOUTH-POLE TELESCOPE PROBE WMAP OBSERVATIONS DIGITAL SKY SURVEY POWER SPECTRUM CROSS-CORRELATION GALAXY CLUSTERS NON-GAUSSIANITY DAMPING TAIL MAPS
571
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25 sigma. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ACDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z similar to 2.
LES ULIS CEDEX A
0004-6361
10.1051/0004-6361/201321543
Grant Details