Peer-Reviewed Journal Details
Mandatory Fields
Brunsdon, C;Fotheringham, S;Charlton, M
2007
October
Geographical Analysis
Geographically weighted discriminant analysis
Published
12 ()
Optional Fields
REGRESSION-MODELS GENERAL FRAMEWORK INFERENCE
39
376
396
In this article, we propose a novel analysis technique for geographical data, Geographically Weighted Discriminant Analysis. This approach adapts the method of Geographically Weighted Regression (GWR), allowing the modeling and prediction of categorical response variables. As with GWR, the relationship between predictor and response variables may alter over space, and calibration is achieved using a moving kernel window approach. The methodology is outlined and is illustrated with an example analysis of voting patterns in the 2005 UK general election. The example shows that similar social conditions can lead to different voting outcomes in different parts of England and Wales. Also discussed are techniques for visualizing the results of the analysis and methods for choosing the extent of the moving kernel window.
OXFORD
0016-7363
Grant Details