Background: Eosinophilic esophagitis (EoE) is a chronic antigen-mediated clinicopathologic disease of the esophagus characterized by an eosinophil-predominant inflammatory infiltrate. A clinical hallmark is extensive tissue remodeling including basal zone hyperplasia, fibrosis, and angiogenesis. However, the cellular mechanisms responsible for these processes are not fully defined. We hypothesized that targeting granulocyte-macrophage colony-stimulating factor (GM-CSF; an agonist cytokine linked with eosinophil survival and activation) would be protective in a preclinical model of EoE.
Methods: Eosinophilic esophagitis-like esophageal inflammation was induced in the L2-IL5(OXA) EoE mouse model, and GM-CSF production was assessed by mRNA and protein analyses. Granulocyte-macrophage colony-stimulating factor-receptor-alpha expression patterns were examined by flow cytometric and immunofluorescence analysis. L2-IL5(OXA) EoE mice were treated with anti-GM-CSF neutralizing antibody or isotype control and assessed for histopathological indices of eosinophilia, epithelial hyperplasia, and angiogenesis by immunohistochemistry and RT-PCR.
Results: Significantly increased levels of esophageal GM-CSF expression was detected in the L2-IL5(OXA) mouse EoE model during active inflammation. Granulocyte-macrophage colony-stimulating factor-receptor-alpha was predominantly expressed on esophageal eosinophils during EoE, in addition to select cells within the lamina propria. Anti-GM-CSF neutralization in L2-IL5(OXA) EoE mice resulted in a significant diminution of epithelial eosinophilia in addition to basal cell hyperplasia and vascular remodeling. This treatment response was independent of effects on esophageal eosinophil maturation or activation.
Conclusion: Granulocyte-macrophage colony-stimulating factor is a potential therapeutic target to reduce esophageal eosinophilia and remodeling.